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In the theors of steady progressive saves of finite s~pl~tude on the snr- 
face of a fluid of infinite depth various at&hods of applying the bouiid- 
ary condition on the wave profile are known, One of these, proposed by 
Davis [I], consists in transforning this condition to the inagfnar~ part 
of a differential equation. A defect in the method of Davis is that the 
condition, expressed in the form of Levi-Civfta, is not applied exactly, 
but is replaced by a condition close to it. In the present paper a method 
is given for reducing the exact boundary condition to a complex differ- 
ential equation which permits waves up to forms close to the limiting 
form to be investigated. 

1. We shall consider the motion of a fluid in a system of coordinates 
xOy, stationary relative to the wave profile (Fig. 1). We have the 
following boundary conditions for the velocity potential and the stream 

function: 

We shall map the region under consideration in the plane of the com- 
plex velocity potential tv into a circle of unit radius in the auxiliary 

Fig. 1. 
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plane u with the help of the function 

W=&+ (1.2) 

The boundary conditions for the complex conjugate of the velocity will 

be: 

ImG=O on CD, IxG=O on AE, u=c OllDE (1.3) 

For the modulus q of the velocity on AC we have the Bernoulli equation 

f 4* -gy=c (14 

where C is a constant. Differentiating with respect to the arc length s 
of the profile and noting that 

we obtain 

q* 2% 
da, 

- g sin 0 = 0 (1.5) 

where 8 is the angle of inclination of the tangent of the wave profile 

to the Ox axis. 

2. We shall introduce the function 

~=z+i9=lnz- (2.1) 
V 

where c is the dispersion velocity of the waves. Taking (1.3) and (1.5) 

into consideration, we obtain the following boundary conditions for the 
function 5: 

Im 5 = 0 on CD, Im 5 = 0 on AE, 5 = 0 on DE (2.2) 
$L!L+ 8’ sin 0 = 0 on AC (2.3) 

We shall expand the functions e3* and sin 8 into power series and 
multiply them. Discarding terms higher than the fifth power and grouping, 
we obtain 

e3’ sin 0 = 0 + + (2r0) + +- (32*0 - fP) + +- (490 - 4285) + 

+ & (52”e - 102283 + es) + 4rse + 498 + + z’e - 9 2283 (2.4) 

We shall write out the imaginary parts of the five powers of 5 
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Im 6 = 8, Im I;g = 220, Im 5” = 37% - P 

Im 5” = 4256 - 47iP, Im %6 = 5248 - 1oz*ea + 06 (2.5) 

‘Ihe first five terms on the right-hand side of (2.4) can be repre- 
sented as 

Im(S+~~8+$58+$P+~P) (2.6) 

It is impossible to represent the rest of the terms as integral 
powers of {* However, as will be shown below, they can be represented as 
the imaginary part of the power series F(x) in the function 

x=~+iq=------ i -“;a (2.7) 

which is a solution of the differential equation 

-U$+X+pXa=O (2.8) 

where o and CI are some real positive constants. 

According to (2.4) Im F(x) must be equal to zero on DE. Without 
affecting the generality, we set F(x) = 0 on DE. Then, writing &f$ in 
the form Im idl;/dw, the condition (2.3) can be represented in the form 

Im i$~+5+4r+tss+4r+~6’+F(X)]=0 
r (2.9) 

3. For ap < 1 the function (2.7) maps a circle of unit radius in the 
u-plane into a circle of radius R in the x-plane, which is displaced 
relative to the initial coordinates by an amount e (Fig. 2). According 
to (1.2) and (2.8) we have 

dtu=&A w 

Substituting (3.1) into (2.Y), we obtain the condition on the contour 
of the circle in the x-plane 

(3.2) 

From the condition of the periodicity of the fluid motion along the 
Ox axis the function 5 takes identical values on both sides of the cut, 
which is taken on the segment of the real axis lying within the circle 
of the x-plane. 

The function, appearing in the square brackets in condition (3.2), 
will also be holomorphic inside the circle of the x-plane and has an 
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imaginary part which is equal to zero on the contour of the circle. 

Fig. 2. 

Jherefore it can be analytically continu- 
ed into the external part of the circle 
and it will assume complex conjugate 
values at points synzaetric to the in- 
terior points of the circle relative to 
the contour of the circle. Because this 
function is holomorphic inside the circle, 
after the analytic continuation it will 
then be holomorphic in the entire x-plane. 
From the Liouville theorem such a func- 
tion is equal to a constant. This con- 
stant must be set equal to zero if it is 
taken into consideration that F(x) = 0, 

5 = 0 and d(/dx = 0 for x = 0. Thus, in the x-plane we obtain the equa- 
tion 

- y7 (x +w’)g + 5 + $ 5” + + P + f 5* + & 6-$ + F (xl = 0 (3.3) 

me differential equation (3.3) can be integrated, representing the 
function 5 in the form of the series 

5 = x + da= + 4x” -k &x5 + . . (3.4) 

which according to (2.7) 
tain the equality d, = 0 

V. 

satisfies the boundary conditions (2.2). We ob- 
corresponding to the choice of the coefficient 

N’e shall separate the real and imaginary parts in (3.4) 

a = E + da (Es - 3gqZ)+ . . ., 0 = q + $ (3E2q - qa) + . . a (3.5) 

Hence, discarding terms higher than the fifth power, we find 

(3.6; 

(3.7) 

4. In order to represent the right-hand side of the equality (3.7) as 
the imaginary part of a power series in x, we determine the values of R 
and e from Formula (2.7) and write the condition which relates the 
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fuuctions g and ‘1 on the contour of the circle 

(8 - e)” + q* = R” (4*1) 

Introducing the notation p = R* - e*$ we rewrite (4.1) in the form 

%%==P -i-~%--rJ2 (4.2) 

Multiplying the equality (4.2) by vl; we o&a& 

%% = Frl + &%rl - $ 

Then, using (2.51, we obtain 

4pq = Im(m+&-t-x8) 

~ltiplyi~ the equality (4.2) by Et; we obtain 

gsq = p%q + S%% - %$ 

Then, using (2.5) and (4.31, we find 

4%V = Im (ep x + Rsxa + e$ -f- f x4) 

Multiplying the equality (4.2) by c2q and q3 in turn 

(4.3) 

Pq = p%%q + SPq - %%a, %V = p%s -I- zs%g - q5 

and taking fZ.51, (4.3) and (4.41 into consideration, we obtain (4.5) 

f6%4prl = Im [P @P + 5-@) x + e (2~ + 5Ra) xa -t- (3~ i- 5ea) xa + &x4 f x6 

16%aqs =Im[p(2p+3ea)~+e(2p+3Re)XB+Cp +3eB)11a+ex4 -xxs 

It is easily seen that products of e@91H of any power can be repre- 
sented on the contour of the circle by similar mans. 

Substituting (4.3) t (4.4) and (4.5) into (3.11, we determine F(x). Sub- 
stituting (3.4) into (3.3) and equating coefficients with the same powers 
of x, we find after simple transformations 

C2 =&s+K), $9 
p=1+K, d,= 

$+e ++(?P+II@f 
2-2p--es+3K: 

6 

d4 = 
T-j-$- 1% 

-L-4(f-2e-t_3L) ~++&--&(3+~~ WV 

34-m 
t ii& = 

4f511 

where 

K =p[1 -t_e+~_(4P+IleB)--(11,0p-ee)l 
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L = R* + e 11 + + (4~ + llR*) + d&l (4.7) 

We shall solve the second and third equations of (4.6) for the un- 
knowns u and d3 by the method of successive approximations. First, we set 

P = 3/2 and compute R, e and p from (4.7). From them, setting d, = 0 and 
using formula (4.61, we compute new values of CI and d, and repeat the 
process. From the finally computed values of P and d, we compute all the 
rest of the quantities. 

To construct the domain of the function 5, in (3.4) we set 

x = e + Reia 

As a result we obtain 

Here 

5 = a0 + alei= + ag2ia + a#*= + a&a (4 -8) 

a0 = e [I + e2 (d* + c&e + d,e’)l, a, = R [l + es (3d8 + 4d,e + 5d6e*)l 

a2 = R2e (3d, + 6d,e + lOd,e”), a, = R9(ds + 4d,e + 10d,e2) 

a4 = R4 (dd + 5d,e), a, = R6d, 

5. From (1.2) and (2.1) we have 

dz = & e’: $f (5.1) 

Taking (2.7) and (3.4) into consideration and discarding tenns’higher 
than the fifth power, we expand the functions 5 and e 5 * into series in 
powers of II 

5 = au + pa2u2 + (p2 + d,jaau3 + (ps + 3pd8 + d4) a”u’ + 

+ (P + 6p2d8 + 4pd* + d,) asus (5.2) 

ec = b,u + b2u2 + b,u3 + b,u’ + b,u5 (5.3) 

Here 

b, = a, b, = (p + -&) a2, ba=h’ +P +$+d&? 

b, =[P” +$P’ +(3d, +$)P + d, + dd +&)a’ 

bc = [P’ + 2~” + (6d, + 1) IL” + (4d, + 4d, + $) p + + d, + da + &I a5 
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Substituting (5.3) into (S.l), integrating and discarding the arbi- 
trary constant, we obtain 

z=&[ln 

Setting u = e4, 

We determine the 
which is stationary 
formula 

u + b,u + + brua + + bSu3 + $ b,u’ + + b.zab] (5.4) 

the equation of the wave profile can be found. 

complex velocity potential in a system of coordinates 
with respect to the fluid at infinite depth from the 

wi = w - cz (5.5) 

~stituting expressions for w and z from (1.2) and (5.4) into (5.5) 
and omitting the subscript, we obtain 

w =-m A’ [b,u + + b,ue + $ b8u3 + + b,u’ + f b,u’] (5.6) 

6. Setting w = Q + iyl in (5.6) and the fluid density p = 1, we calcu- 
late the momentum in one wave period from the formula 

K = i 
Y§ 

zdq (6.1) 
L 

Integrating (6.1) by parts and noting that Q = 0 on the se~ntsC~, 
DE and A&, we obtain 

K ’ Z-t 
d 

cpdz, or K =-si (w +z)dz 
f (6.2) 

Lo tu 

where we carry out the integration along the contour L, of a circle of 
unit radius in the u-plane. Using Formulas (5.4) and (5.6), we find from 

(6.2) 

q/=0, K+-$$q b,B + $ b,a + $ b,* + + baa + + bka) (6.3) 

We calculate the kinetic energy of one wave 

T =f$qdg 
L 

Integrating (6.4) by parts, we find another 

T -_-- : 9@ 9 
L 

period from the formula 

(6.4) 

fornatla 

(6.5) 

Adding (6.4) and (6.5) and dividing by two, we obtain the formula 
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T = Im+$wdw 
L 

(6.6) 

Noting that 9 = 0 on the segments CD, DE and AE, we obtain finally 

T=Imf &dw 
+ (6.7) 
h 

where we carry out the integration along the contour of a circle of unit 
radius in the u-plane. Using (5.6), we obtain: 

T=-$_ (6.8) 

We determine the fluid volume Q displaced per wave period and the 
static level of the fluid y0 

Q : 
= --, &)=-; (6.9) 

We compute the potential energy per wave period from the formula 

V =+g{(y - yoJ2dz (6.10) 

0 

Using Formula (5.41, we obtain 

v =gs[b, 

+ b, 

In view of the 

(1 +f b2) + +a2 (1 + h) ++a2 +;h2 +&b2 + 

(bh, + + b&,, + $ b,b,) + $ b,b,b,] - $ y (6.11) 

great complexity of the expression for the coefficients 
of the series (3.4) its convergence could not be proved. l’he numerical 
solution indicates that for a = 0.3, which corresponds to the ratio 
H/A = 0.116, the series (3.4) and (5.41 converge nicely. In Fig. 1 and 
Fig. 2 the calculated wave profile and the domain of the function 5 are 
const rutted. 
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