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In the theory of steady progressive waves of finite amplitude on the sur-
face of a fluid of infinite depth various methods of applyins the bound-
ary condition on the wave profile are known. One of these, proposed by
pavis [1], consists in transforming this condition to the imaginsry part
of a differential equation. A defect in the method of Davis is that the
condition, expressed in the form of Levi-Civita, is not applied exactly,
but is replaced by a condition close to it. In the present paper a method
is given for reducing the exact boundary condition to & complex differ-
ential equation which permits waves up to forms close to the limiting
form to be investigated.

1. We shall consider the motion of a fluid in a system of coordinates
20y, stationary relative to the wave profile (Fig. 1). We have the
following boundary conditions for the velocity potential and the stream
funection:

p=ch, O0<P< oo on CD, ~0, 0<Yp< oo on AE
0<e<Cch, Y=o onDE, 0<o<Cch, $=0 ondC (1.1)

We shall map the region under consideration in the plamne of the com-
plex velocity potential v into a circle of unit radius in the auxiliary
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plane u with the help of the function

A
wm-z-:—g-i-lnu (1.2)

The boundary conditions for the complex conjugate of the velocity will
be:
Imv=0 on CD, Imv=0 on AE, v=c¢ onDE (1.3

For the modulus g of the velocity on AC we have the Bernoulli equation
%q’mgy =C (1.4)

where C is a constant. Differentiating with respect to the arc length s
of the profile and noting that

_ 9 . dy _
ds——-q}—, - =sinf

we obtain
d .
qzaé'-—-gsme=o : (1.5)
where 8 is the angle of inclination of the tangent of the wave profile
to the Ox axis.

2. We shall introduce the function
=1+ =ln—= 2.1)

where ¢ is the dispersion velocity of the waves. Taking (1.3) and (1.5)
into consideration, we obtain the following boundary conditions for the
function {:

Imn{=0 onCD, Im{ =0 on AE, {=0 on DE @2.2)
%%4— e sin =0 on AC 2.3)

We shall expand the functions e3T and sin 6 into power series and

multiply them. Discarding terms higher than the fifth power and grouping,
we obtain

e sin § = 8 4 T (210) + - (3720 — 6%) -+ > (47%0 — 410%) +
+ g7 (5740 — 107%0° 4 6%) + 4720 + 4730 412 vho — 2 w293 (2.4)

We shall write out the imaginary parts of the five powers of {
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Im{=0, Im{ =2t Im¢ =370 —0°
Im §* = 47% — 4103, Im [® = 5v%0 — 101%0% - 6% (2.5)

The first five terms on the right-hand side of (2.4) can be repre-
sented as

Im(E+ 530 +30+38 4+ ) (2.6)
It is impossible to represent the rest of the terms as integral
powers of {. However, as will be shown below, they can be represented as
the imaginary part of the power series F(x) in the function
. au
X=§+"I=1__M,‘ (2‘7)
which is a solution of the differential equation

d
-u-ﬁ—+x+px2=0 2.8)
where ¢ and p are some real positive constants.

According to (2.4) Im F(x) must be equal to zero on DE. Without
affecting the generality, we set F(y) = 0 on DE. Then, writing 97/9¢ in
the form Im i d{/dw, the condition (2.3) can be represented in the form

.8 d
m[iS 2 40+ 20 +30+20+ 5 04+F)] =0 (29)
3. For ap <1 the function (2.7) maps a circle of unit radius in the
u-plane into a circle of radius R in the x-plane, which is displaced
relative to the initial coordinates by an amount e (Fig. 2). According
to (1.2) and (2.8) we have

e _dx
dw = pr e (3.1)

Substituting (3.1) into (2.9), we obtain the condition on the contour
of the circle in the x-plane
(3.2)
27c?

Im [~ B2 (4t p) e+ L+ O+ O+ E U+ U+ F ] =0

From the condition of the periodicity of the fluid motion along the
0x axis the function [ takes identical values on both sides of the cut,
which is taken on the segment of the real axis lying within the circle
of the yx-plane.

The function, appearing in the square brackets in condition (3.2),
will also be holomorphic inside the circle of the x-plane and has an
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imaginary part which is equal to zero on the contour of the circle.
Therefore it can be analytically continu-
ed into the external part of the circle
and it will assume complex conjugate
values at points symmetric to the in-
terior points of the circle relative to
the contour of the circle, Because this
7  function is holomorphic inside the circle,
after the analytic continuation it will
then be holomorphic in the entire x-plane.
From the Liouville theorem such a func-
tion is equal to a constant. This con-
stant must be set equal to zero if it is
taken into consideration that F(x) = 0,

{ = 0 and d{/dx = 0 for x = 0. Thus, in the x-plane we obtain the equa-
tion

Fig. 2,
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The differential equation (3.3) can be integrated, representing the
function { in the form of the series

=%+ dex® + dey* +dox®* + . . (3.4)

which according to (2.7) satisfies the boundary conditions (2.2). We ob-
tain the equality d, = 0 corresponding to the choice of the coefficient
H.

We shall separate the real and imaginary parts in (3.4)
T= b d (B =3t S=n 4 (BB — ) ... (3.5)
Hence, discarding terms higher than the fifth power, we find
20 = &M + Sdgtin — TdyEn?
0 = En, 0 = E4, 1%0° =E¥? (3.6
410 + 41%0 + 12 w10 — 21208 =
= 48 + 48 + (§ + 20d,) & — (5 + 284,) 8 (3.7)
4. In order to represent the right-hand side of the equality (3.7) as

the imaginary part of a power series in y, we determine the values of R
and e from Formula (2.7) and write the condition which relates the
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functions § and n on the contour of the circle
(E—e? +n =Rt (4.1)
Introducing the notation p = R? - e?, we rewrite (4.1) in the form
B =p +2E—n (4.2)

%*
Multiplying the equality (4.2) by n; we obtain
En = pn + 28 — 7?°

Then, using (2.5), we obtain
48 = Im (py + ex? + %) 4.3)
Multiplying the equality (4.2) by &n; we obtain
En = ptn + 2¢8%n — &n®

Then, using (2.5) and (4.3), we find
48 =Im (epy + R + ex® + 51 (4.4)

Multiplying the equality (4.2) by &% and 1® in turn
En = pEn + 2e8% — B®, E'n® = pE® + 28 — 0®

and taking (2.5), (4.3) and (4.4) into consideration, we obtain

16&'n = Im [p 2p + 5¢®) % + e (2p + SR?) x* + (3p + 5¢%) 4® + 3ex' + %°

168 ° =Imip 2p + 3e*) x4 +e2p +3R) * + (p + 3N x>+ ex* — %
It is easily seen that products of £™"n® of any power can be repre-

sented on the contour of the circle by similar means.

Substituting (4.3), (4.4) and (4.5) into (3.7), we determine F(y). Sub-
stituting (3.4) into (3.3) and equating coefficients with the same powers

(4.5)

of x, we find after simple transformations
3 7 1
_ Mg 3+ _ gte+wp+ite])
"2“‘25:”“'*‘1{)’ bP=T7% " dy = 2—2p—é 4 3K
2t yre—di(F—243L) Q- Bt d—d3+an (46
dy = 3+ 4K * LA 4+ 5K

where
K=pl+e+s4p+ 11 — ds (p — %))
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L=R+e[l+-1(p+ 11R?) + dye?] (4.7
aﬂp.: 3
(R=1_a,,apz. ¢=T— o P=1—:ama')

We shall solve the second and third equations of (4.6) for the un-
knowns p and d, by the method of successive approximations. First, we set
u = 3/2 and compute R, e and p from (4.7). From them, setting d; =0 and
using formula (4.6), we compute new values of u and d, and repeat the
process. From the finally computed values of p and d; we compute all the
rest of the quantities.

To construct the domain of the function {, in (3.4) we set
X = e + Re™®
As a result we obtain
£ = ag + 016" + age?™® + que¥® | gget® (4.8)

[lere

g = e[l + ¢ (dy + dee + die?)], a, =R [1 + ¢* (3d; + 4dse + 5dge?)]
a2 = Rze (3d3 + 6d4€ + 10d‘ez), as - Ra(ds + 4d‘e + 10d;82)
4y = R* (d, + 5dg¢), a5 = R%,

5. From (1.2) and (2.1) we have

A d
dz = 5o € -} (5.1)

Taking (2.7) and (3.4) into consideration and discarding terms higher
than the fifth power, we expand the functions [ and e> into series in
powers of u

{ = au + pa®u® + (p® + dy)a®u’® + (u® + 3ud; + d,) atut +
+ (u* + 6p%d; + dpd, + di) a®ub (5.2)
€t = b,u + byu? + bau® + but + b,ub (5.3)

Here

bi=a, bi=@+3 e b=(+p+++d)e
by =Iw® + 30 4+ (3d; +3)p + dy + dy +2) a*
by =[n* + 20+ (Bds + 1) p? + (4d; + 4dy + L) p + 1 d, +d, +d;] 2
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Substituting (5.3) into (5.1), integrating and discarding the arbi-
trary constant, we obtain

2=l bm + F bt + Lo + L bt + 2o (5.4)

Setting u = e¢'®, the equation of the wave profile can be found.

We determine the complex velocity potential in a system of coordinates
which is stationary with respect to the fluid at infinite depth from the
formula

Wy =W — 3 (5.5)

Substituting expressions for w and z from (1.2) and (5.4) into (5.5)
and omitting the subscript, we obtain

w = — T};‘c-{-[blu +Liow + Lo 4 Lot +1 b,u“] (5.6)

6. Setting w = ¢ + iy in (5.6) and the fluid density p = 1, we calcu-
late the momentum in one wave period from the formula

K = i & zdo 6.1)
$

Integrating (6.1) by parts and noting that ¢ = 0 on the segments CD,
DE and AE, we obtain

K=—~i(§)q>dz, or K=—;—i<§;(w+‘:z)dz (6.2)
Lo Ly

where we carry out the integration along the contour L; of a circle of
unit radius in the u-plane. Using Formulas (5.4) and (5.6), we find from
(6.2)

2, .
K, =0, Kx=— 32-_“3_( bR+ Tb2 +1b3 + b +153) (6.3)
We calculate the kinetic energy of one wave period from the formula
T =1 <§>q> dvp (6.4)
L
Integrating (6.4) by parts, we find another formula

T = _.;_i;apdq; (6.5)

Adding (6.4) and (6.5) and dividing by two, we obtain the formula
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T — Im—i— @5 dw (6.6)
L

Noting that ¢ = 0 on the segments CD, DE and AE, we obtain finally

T = Im $udw 6.7)
L,

where we carry out the integration along the contour of a circle of unit
radius in the u-plane. Using (5.6), we obtain:

Ke

r——2 (6.8)

We determine the fluid volume Q displaced per wave period and the
static level of the fluid y,

Q=—2, p=—7 (6.9)

We compute the potential energy per wave period from the formula

13
V=3el\t—y)tde (6.10)
0

Using Formula (5.4), we obtain

V=R b (12 b) 4+ 302 (14 b0 + 202 + 502 + b +
0y (s + F 0y 1 bs) 5 bbb - +E @)

In view of the great complexity of the expression for the coefficients
of the series (3.4) its convergence could not be proved. The numerical
solution indicates that for a = 0.3, which corresponds to the ratio
H/A = 0.116, the series (3.4) and (5.4) converge nicely. In Fig. 1 and
Fig. 2 the calculated wave profile and the domain of the function [ are
constructed.
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